植込み型心臓電気デバイス装着患者に対する放射線治療ガイドライン

日本放射線腫瘍学会・日本循環器学会 編
植込み型心臓電気デバイス（CIEDs）装着患者に対する放射線治療ガイドライン

日本放射線腫瘍学会・日本循環器学会 編
(2019年10月10日承認)

目次

I. 基本的事項
1. 目的
2. 対象
3. 利用者
4. 作成方法

II. はじめに
1. CIEDs の対象疾患・適応・疫学
2. CIEDs の構造
3. 電離放射線による CIEDs の動作異常
 1) 動作異常の種類
 2) 動作異常の原因
 3) 動作異常による影響
 4) CIEDs の耐容線量

III. ガイドラインの内容
1. 総論
2. リスク分類
 1) 低リスク
 2) 中リスク
 3) 高リスク
 4) 備考
 5) リスク分類の設定根拠
3. 放射線治療の準備時に行うべき事項
4. 放射線治療の照射直前・照射中・照射直後に行うべき事項
5. 放射線治療終了後に行うべき事項
6. 植込み型心臓モニタおよびリードレスペースメーカについて

IV. その他
1. 「植込み型心臓電気デバイス装着患者に対する放射線治療ガイドライン」作成小委員会...
2. 外部評価とパブリックコメント
 1) 外部評価委員
3. 資金と利益相反（Conflict of Interest: COI）
 1) 経済的 COI
 2) アカデミック COI

V. 付表
1. 本ガイドラインの要約
2. リスク分類の比較表
3. リスク分類毎の放射線治療の準備時に対応の比較表
4. リスク分類毎の機能チェックのタイミングの比較表
5. 主な CIEDs メーカーの推奨の比較表
6. 本ガイドラインの新旧比較表

VI. 参考文献
I. 基本的事項

1. 目的

ペースメーカ（Pacemaker: PM）や植込み型除細動器（Implantable Cardioverter Defibrillator: ICD）などの植込み型心臓電気デバイス（Cardiac Implantable Electronic Devices: CIEDs）装着患者に対する放射線治療で引き起こされる機器の誤作動が報告されており，各国・各学会からガイドラインが発行されている。本邦では2010年8月に日本放射線腫瘍学会がガイドライン（以下，旧ガイドライン）を公表したが，8年の間に種々の新たな知見が得られたため，日本放射線腫瘍学会と日本循環器学会が共同で旧ガイドラインを見直し，改訂を行った。

2. 対象

本ガイドラインではCIEDs装着患者で放射線治療を受ける患者を対象とする。なお，近年普及しはじめている植込み型心臓モニタおよびリードレスペースメーカについては，「III.6.植込み型心臓モニタおよびリードレスペースメーカについて」の項を参照されたい。

体内に電気刺激装置を植込む治療法はCIEDsのほか，パーキンソン病などに対する深部脳刺激療法（Deep Brain Stimulation: DBS）や難治性てんかんへの迷走神経刺激療法（Vagus Nerve Stimulation: VNS）などがあるが，報告が十分集積していないため，本ガイドラインでは対象としない。

3. 利用者

本邦で，放射線治療を取り扱うメディカルスタッフならびに植込み型心臓電気デバイスを取り扱うメディカルスタッフとする。ここでいうメディカルスタッフは，医師，看護師，診療放射線技師，医学物理士，などの多職種を含む。

4. 作成方法

目的の項に記載の通り，種々の新たな知見が得られたため，以下の手順でガイドラインを改訂した。本ガイドラインは，日本放射線腫瘍学会および日本循環器学会により，共同で作成されたものである。両学会からCIEDs装着患者で放射線治療を受ける患者の診療に携わっている会員を公募または推薦のうえ，作成委員会を組織した。2018年5月から以下の方法で作成を行った。

本ガイドラインは旧ガイドラインの内容に，システマティックレビューによって得られた作成資料の知見を追加し，本ガイドライン作成委員（以下，作成委員）の合意のもとで作成した。なお，エビデンスが少ない領域であるにもかかわらず，日常診療で想定されるシチュエーションが多岐にわたるため，クリニカルクエスチョン（CQ）の設定や個々の文献のエビデンスレベルの決定を行っていない。
システマティックレビューは放射線治療専門医2名、医学物理士1名の計3名が文献選定を担当した。PubMedを使用し、2018年6月までの10年間を検索期間とし、「radiotherapy」と「pacemaker」、「radiotherapy」と「ICD」の検索式を用いて、それぞれ102および114編を抽出した。3名の担当者とも同一の文献を抽出でき、担当者間の抽出の相違はなかった。得られた文献の表題と抄録内容から、3名の担当者が独立して一次文献選定を実施し、担当者間で協議の上、最終的に統一された一次選定文献が決定された。その後、一次選定文献の本文の内容を検討し、二次選定文献が決定され、作成資料とした。作成委員によるハンドサーチも合わせて実施し、得られた文献で重要と考えられるものを作成委員の合意のもとで作成資料に追加した。

II. はじめに
1. CIEDs の対象疾患・適応・疫学
 PM は房室ブロック、洞機能不全症候群、心房細動、肥大型心筋症などによる徐脈性不整脈に適応があり、無症状のものから失神を繰り返すものまで症状は多岐にわたる。2017年には新規交換を合わせて年間約60000例に植込みが実施され、症例数は年々増加している。
 ICDは心室細動や心室頻拍などによる心臓突然死の最も強力な予防法として位置づけられており、リスクが高い患者が適応となる。2017年の新規交換を含む年間症例数は約6700例であり、PMと同様に増加している。
 また、心室内伝導障害に対する治療として両室ペーシングによる心臓再同期療法（Cardiac Resynchronization Therapy: CRT）が確立され、心室細動による突然死に対応するために両室ペーシング機能付きICD（CRT-D）が開発され、適応患者が増加している。
2. CIEDs の構造
 CIEDsは基本的に本体とリードより構成される。本体は、チタンのケースで覆われた半導体素子などによる制御回路と電池が基本構造となる。リードは心臓の電気信号を本体に伝え、電気刺激を本体から心臓に送る。
3. 電離放射線によるCIEDsの動作異常
 1) 動作異常の種類
 動作異常はソフトウェアまたはハードウェアのエラーに分類される。ソフトウェアのエラーには不適切なペーシング、バックアップ設定に変更されるリセット、放射線照射中にのみ一時的に発生するオーバーセンシング、不適切なICD作動などがある。ハードウェアのエラーにはCIEDsの交換を要する恒久的な機能不全がある。
2) 動作異常の原因

低エネルギーX線では光電効果などに起因した過電流が動作異常を引き起こす可能性がある。高エネルギーのX線では更に二次的な中性子（二次中性子）が発生し、回路内で核反応を起こし動作異常を繰り返す可能性がある。電磁波などのノイズ（電磁干渉）も原因となることがある。

これまでに臨床報告されてきた動作異常は二次中性子が主な原因と考えられる。この二次中性子は10MV以上の高エネルギーX線、陽子線や炭素線のような粒子線を使用する場合に発生する。このような動作異常は線量が低くても確率的に発生するため、注意を要する。

6MV以下の高エネルギーX線や小線源では二次中性子は原理的に発生しないが、過電流による動作異常は発生し得る。この場合、過電流は高線量率であるFlattening-Filter Free（FFF）ビームで顕著になる可能性があるため、注意が必要である。

3) 動作異常による影響

動作異常によりCIEDs装着患者が訴える症状には動悸、めまい、意識消失などがある。生命を脅かすような重篤な動作異常の報告は下記のように2例みられ、まれではあるが生命を脅かす結果に至ることがある。

1例目はICDのソフトウェアのエラー（不適切なペーシング）による速い心室ペーシングによって心室頻拍が引き起こされ、心律不整を要した報告である。心室頻拍はデバイスによって適切に認識され、速い心室ペーシングの解除によって心室頻拍も改善し、適切なペーシングに復帰した。患者は一時的に心肺蘇生を必要とし、気管挿管による人工呼吸とインテフェリン静注によって救命された。本症例は左上葉肺癌に対し59.4 Gy/33回の予定で放射線治療を開始され、3回目の照射中に当該エピソードが発生した。放射線のエネルギーが不明なため、後述のリスク分類でのリスクに該当するかは不明である。

2例目はPMのソフトウェアのエラー（不適切なペーシング）による速い心房ペーシングによって胸部苦悶感、息切れ、血圧低下を認め、集中治療室に搬送された報告である。速い心房ペーシングは体外からの設定変更を受け付けず、リードの接続を解除することで洞調律に復帰し、患者の症状も改善した。本症例は胸部食道癌に対し30Gy/10回の予定で放射線治療を開始され、9回目の照射直後に当該エピソードが発生した。症例報告中にエネルギーの記載はないが、the German Society of Radiation Oncology・the German Society of Cardiologyのガイドライン・レビューにおいて18MVの光子線が使用されていたという情報が追加されているため、後述のリスク分類で高リスクに該当すると推定される。

4) CIEDsの耐容線量

動作異常の原因となる明確な耐容線量は定まっていない。2018年8月時点における各メーカーの線量限度の多くは1～5Gyであるが、少ない線量でも安全性が保証されるわけではないことを認識しておく必要がある。また、①メーカー、機種、ICD機能の有無によって線量限度が異なること、
２多くのメーカーで本体に直接線を照射しないことを前提にしていることに留意し、治療にあたっては各メーカーの最新の情報を確認されたい。

III. ガイドラインの内容

1. 総論

本ガイドラインは各国・各学会のガイドライン２、３、４、７で主流になっている低、中、高リスクの３段階のリスク分類を採用する。低リスクでも安全性が保証されるわけではないことを認識しておく必要がある。なお、より高いリスクに準じて対応することを妨げない。また、十分な態勢が確保できずに患者の生命に危険が及ぶ可能性が予想される場合には、対応可能な施設に照射を依頼すべきである。

2. リスク分類

1) 低リスク

以下の全てを満たす患者を低リスクとする。

・「10MV未満の光子線」または「20MeV未満の電子線」
・PMが留置されているが、レートが依存していない
・胸部に照射されない
・本体線量2Gy未満
・心室細動の既往なし

2) 中リスク

低、高リスク以外の患者を中リスクとする。

3) 高リスク

以下のいずれかに該当する患者を高リスクとする。

・10MV以上の光子線
・20MeV以上の電子線
・陽子線
・炭素線
・PM依存あり
・本体線量10Gyを超える
・心室細動の既往あり
・ICD介入の既往あり
4) 備考

FFF ビームを使用する場合は、当該患者の病状に応じてリスクを1段階高めることを考慮する。小線源を使用する場合は光子線として対応し、他の要件を踏まえてリスク分類を行う。

ホウ素中性子捕捉療法（Boron Neutron Capture Therapy: BNCT）は、中性子を使用しているため、CIEDs 装着患者には禁忌とされている。

5) リスク分類の設定根拠

二次中性子を発生する放射線に該当し、臨床での動作異常が報告されているため、10MV 以上の光子線を高リスクとする。二次中性子の発生が10MV 以上の光子線と同等とされるため、20MeV 以上の電子線も高リスクとする。二次中性子を発生する放射線に該当し、臨床での動作異常が報告されているため、陽子線を高リスクとする。陽子線より少ないものの二次中性子を発生することから、炭素線も高リスクとする。

二次中性子を発生する放射線に該当しないため、「10MV 未満の光子線」または「20MeV 未満の電子線」を低リスクとする。ただし、10MV 未満の光子線において、臨床での動作異常がなかったとする報告が多いものの、あったとする報告も存在するため、他の要件を満たす場合にのみ低リスクとする。「PM である」、「PM 依存なし」、「胸部に照射されない」を低リスクの要件に含めた場合に、臨床での動作異常がなかったと報告されているため、本ガイドラインにおいても低リスクとする。

FFF ビームによる臨床での動作異常の報告はないが、過電流が顕著になることで動作異常が増加する可能性がある。今後の動向次第で高リスクとすべき状況に至る可能性があると考え、1段階高めることを考慮することとする。

二次中性子を発生する放射線に該当せず、臨床での動作異常も報告されていないため、小線源を独自の要件とはせず、使用する場合は光子線として対応し、他の要件を踏まえてリスク分類を行う。

上記以外は旧ガイドライン、各国・各学会のガイドライン、作成資料を踏まえて、作成委員の合意のもとで作成した。

3. 放射線治療の準備時に行うべき事項

1) 放射線治療により CIEDs の動作異常が生じる危険があることを患者に十分に説明し、インフォームド・コンセントを取得する。また、治療期間前より循環器科と密な連携を取る必要があることを患者に説明する。

2) 治療前より循環器科と密な連携を取り、循環器の病態（心室細動の既往を含む）および CIEDs
の機能や依存度（ICD 介入の既往を含む）を把握する。

3) ベースメーカ手帳でメーカー連絡先、機種、型式、設定などを確認し、コピーを診療録に保存しておく。

4) 放射線治療のモダリティ、エネルギー、治療部位、CIEDs の種類、循環器の病態、CIEDs への依存度などから、リスクを分類する。

5) 循環器科医と、照射中に動作異常が生じた場合の対応について、検討しておく。

6) リセットなどの動作異常発生時のバックアップ設定値について、メーカーなどから情報を収集するよう努める（照射中の脈拍監視時に、バックアップ設定値への脈拍の変化に気付くことができれば、動作異常発生の早期発見に繋がると考えられるため）。

7) 放射線治療スタッフ（放射線治療医、診療放射線技師、医学物理士、看護師など）は患者の CIEDs への依存度や設定、動作異常や急変時の対応について十分理解しておく。

8) 急変時の支援体制を整えておく。

9) 放射線治療計画 CT を施行する際は、各施設の CIEDs 装着患者の診断用 CT 時の対応と同様に対応する。

10) 放射線治療計画に当たっては CIEDs の本体部分に直接線が照射されないように注意する。多分割コリメータやモノブロックで遮蔽するだけでなく、直線加速器の絞り（jaw）で囲まれる照射野内に CIEDs 本体が入らないように注意する。

11) 可能な限り、光子線においては 10MV 未満を、電子線においては 20MeV 未満を使用する。

12) CIEDs への総線量を放射線治療前に評価し、診療録に記載しておく。この総線量はできるだけ少なくなっても、安全性が保証されるわけではないことを認識しておく。

13) 照射中にペーシングの抑制が起きた場合に、以降の照射で非同期ペーシングにするかどうかについて、循環器科医と検討する。

14) PM 依存ありの患者においては、照射中に一時的体外ペーシングを準備するかどうかについて、循環器科医と検討する。

15) ICD 機能がある場合、照射中に ICD 機能を停止させるかどうかについて、循環器科医と検討する。

16) 中リスク患者においては、機能チェックを毎週行うかどうかについて、循環器科医と検討する。

17) 高リスク患者においては、機能チェックを毎回行うかどうかについて、循環器科医と検討する。

18) 高リスク患者において適切ながん治療の妨げになる場合、CIEDs 本体の留置部位の変更を含めた対応を検討する。ただし、留置部位の変更に伴って処置を要する合併症が 4〜15%に発生す
るとされており 16, リスクとベネフィットを踏まえ、本体線量 5Gy 未満の場合は留置部位の変更は推奨しないという指針があることを認識しておく 8.

4. 放射線治療の照射直前・照射中・照射直後に行うべき事項

1) 全てのリスクにおいて CIEDs の設定変更を行う可能性があるため、速やかに設定変更を行える体制を取っておく。

2) MV X 線を用いる場合は照合写真、照準写真撮像時も、治療時と同様に絞り（jaw）で囲まれる照射野内に CIEDs 本体が入らないように注意する。また、MV X 線 Cone Beam CT（CBCT）による Image-guided Radiotherapy（IGRT）は、照射範囲に本体が入る場合は原則行わない。また、kV X 線透視や kV X 線 CBCT による IGRT に関しては、各施設の CIEDs 装着患者の診断用の透視検査や CT での対応と同様の対応を行う。IGRT を用いた画像照合の CIEDs における影響については、現在データの蓄積が十分でないため、各施設においてそのリスクとベネフィットを十分に検討した上で施行の是非を決定する。

3) 照射中にペーシングの抑制が起きた場合に、以降の照射で非同期ペーシングにするかどうかについては、循環器科医と準備時に検討した通りに実施する。

4) PM 依存ありの患者において、照射中に一時的体外ペーシングを準備するかどうかについては、循環器科医と準備時に検討した通りに実施する。

5) ICD 機能がある場合、照射中に ICD 機能を停止させるかどうかについては、循環器科医と準備時に検討した通りに実施する。停止させる場合には一時的体外除細動器（AED を含む）の準備を行うこと。

6) 照射中に是患者観察カメラで患者の状況を十分に観察し、毎回照射後に自覚的異常の有無、脈拍を確認する。

7) 中リスク患者においては、初回治療中には心電図もしくはパルスオキシメータによって脈拍に異常がないか監視し、必要な場合には 2 回目以降も照射中の脈拍の監視を継続する。

8) 高リスク患者においては、毎回の照射中に心電図もしくはパルスオキシメータによって脈拍に異常がないか監視する。

9) 照射中に動作異常が生じた場合、循環器科医と準備時に検討した通りに対応する。

10) 照射直前に CIEDs の設定を変更した場合は、照射直後に必要な設定に戻す。

11) 全てのリスクにおいて、初回治療後に CIEDs の機能チェックを行い、診療録に記載する。また、初回治療後の機能チェックで異常がなかったとしても、予測しがたいリセットが生じる可能性があることは認識すべきである。

12) 中リスク患者においては、予定のおおよそ半分の放射線治療が終了した後に機能チェックを行う。毎週チェックするかどうかについては、循環器科医と準備時に検討した通りに実施する。
13) 高リスク患者においては、毎週機能チェックを行う。毎回チェックするかどうかについては、循環器科医と準備時に検討した通りに実施する。

5. 放射線治療終了後に行うべき事項

1) 全てのリスクにおいて、全ての放射線治療が終了した後に循環器科を受診し、CIEDs の機能チェックを行い、診療録に記載する。この際、1〜6ヶ月後にもチェックするかどうかについては、循環器科医と検討する。

6. 植込み型心臓モニタおよびリードレスペースメーカについて

本ガイドライン外部評価中の 2019 年 3 月 29 日には、日本循環器学会/日本不整脈心電学会合同の不整脈非薬物治療ガイドライン（2018 年改訂版）が発行され、CIEDs において、従来から言及されていた PM・ICD・CRT に加え、新たに植込み型心臓モニタやリードレスペースメーカが取り上げられた。

また、パブリックコメントにおいて、植込み型心臓モニタやリードレスペースメーカの本ガイドラインへの追記要望があり、作成委員で検討した結果、本ガイドラインでも取り上げることとした。

1) 植込み型心臓モニタ

植込み型心臓モニタは皮下に挿入される心電計で、失神症状出現時の心電図所見や原因性脳梗塞の原因となる心房細動をとらえることができるため、原因疾患の同定に極めて有用な手段としている。

放射線治療と植込み型心臓モニタに関する報告は乏しいが、機器の特性・目的等を踏まえると、動作異常により所見を検出できずに原因疾患を同定できなくなる可能性がある。したがって、前述の行うべき事項において、植込み型心臓モニタであっても行うべき事項を循環器科医と検討し、対応されたい。その際、メーカーの最新の情報も確認されたい。

2) リードレスペースメーカ

リードレスペースメーカは、基本的にカプセル型の本体とその先端に付属する釘針型のタイシで構成され、タイシを心筋内に刺入し、固定する。通常の PM で多くみられるリードや皮下ポケット関連の合併症を解決するために開発された。

放射線治療とリードレスペースメーカに関する報告は乏しいが、機器の特性・目的等を踏まえ、本ガイドラインにおいては、PM と同様に対応されたい。その際、メーカーの最新の情報も確認されたい。
IV. その他

1. 「植込み型心臓電気デバイス装着患者に対する放射線治療ガイドライン」作成小委員会

委員長

副島 俊典（兵庫県立粒子線医療センター附属神戸陽子線センター・放射線治療科）

委員（五十音順）

大野 豊然貴（獨協医科大学埼玉医療センター・放射線科）
小池 泉（横浜市立大学・放射線医学）
関口 幸夫（筑波大学・循環器内科学）
高橋 重雄（香川大学医学部附属病院・放射線治療科）
辻野 佳世子（兵庫県立がんセンター・放射線治療科）
中村 和彦（愛知医科大学病院・中央放射線部）
新田 和範（茨城県立中央病院・放射線技術科）
橋本 孝之（北海道大学・放射線医学）
松原 礼明（東京女子医科大学・放射線腫瘍学）
余田 栄作（川崎医科大学・放射線腫瘍学）
若月 優（自治医科大学・放射線医学）

2. 外部評価とパブリックコメント

本ガイドラインは日本放射線腫瘍学会と日本循環器学会が共同で作成したものであり、両学会のガイドライン委員会から外部評価を受けた。また、2019年5月から6月の間、日本放射線腫瘍学会および日本循環器学会のホームページを通じて、パブリックコメントとして意見公募が行われた。これらの外部評価やパブリックコメントによる意見をもとに最終稿が作成され、日本放射線腫瘍学会および日本循環器学会の承認を経て発行に至った。

1) 外部評価委員

日本放射線腫瘍学会ガイドライン委員会

秋元哲夫（国立がん研究センター東病院放射線治療科）
磯部公一（東邦大学医療センター佐倉病院放射線科）
猪俣泰典（宝塚市立病院放射線治療科）
江島泰生（獨協医科大学放射線科）
大屋夏生（熊本大学放射線治療科）
淡河恵津世（久留米大学放射線科）
加賀美芳和（昭和大学放射線治療科）
木村智樹（広島大学放射線治療科）
斎藤淳一（富山大学放射線治療科）
戸板孝文（沖縄県立中央病院放射線科）
徳丸直郎（兵庫県立粒子線医療センター放射線科）
中山優子（国立がん研究センター中央病院放射線治療科）
原田英幸（静岡県立静岡がんセンター放射線治療科）
山崎拓也（長崎大学放射線科）
吉田賢史（神戸大学放射線腫瘍科）
吉村亮一（九州医科歯科大学放射線科）
渡辺未歩（千葉大学放射線科）

日本循環器学会学術委員会ガイドライン部会

木村 剛（京都大学医学部附属病院循環器内科）
赤阪 隆史（和歌山県立医科大学医学部循環器内科）
大野 貴之（三井記念病院心臓血管外科）
小野 稔（東京大学大学院医学系研究科心臓外科）
香坂 俊（慶應義塾大学医学部循環器内科）
小菅 雅美（横浜市立大学附属市民総合医療センター心臓血管センター内科）
斎藤 能彦（奈良県立医科大学 第一内科）
清水 渉（日本医科大学循環器内科）
福田 恵一（慶應義塾大学医学部循環器内科）
先崎 秀明（北里大学医学部新世紀医療開発センター）

3. 資金と利益相反（Conflict of Interest: COI）

本ガイドラインの作成に資金を要しなかったため，研究助成などは受けていない。
日本放射線腫瘍学会の COI に関する指針に従って，作成委員の COI の申告を得たので以下に示す。2016年1月1日から2018年12月31日までの利益相反状況を開示している。ただし，本ガイドラインの作成は，医療および関連領域の専門家が，科学的に公平な立場で実施したものであり，特定の団体や医薬品・医療機器の販売者などとの利害関係により影響を受けたものではない。

1) 経済的 COI
① 役員・顧問職：
② 株：
③ 特許使用料
①会議出席・講演料など:
⑤原稿料など:
⑥研究費:
⑦奨学（奨励）寄附金:
⑧寄付講座への所属:
⑨その他の報酬:

2) アカデミック COI
10 自らの文献を引用している

副島 俊典（兵庫県立粒子線医療センター附属神戸陽子線センター・放射線治療科）
全項目該当なし

大野 豊然貴（獨協医科大学埼玉医療センター・放射線科）
全項目該当なし

小池 泉（横浜市立大学・放射線医学）
7；日本メジフィジックス社,富士製薬工業

関口 幸夫（筑波大学・循環器内科学）
1；フクダ電子
8；アポット

高橋 重雄（香川大学医学部附属病院・放射線治療科）
全項目該当なし

辻野 佳世子（兵庫県立がんセンター・放射線治療科）
全項目該当なし

中村 和彦（愛知医科大学病院・中央放射線部）
全項目該当なし

新田 和範（茨城県立中央病院・放射線技術科）
全項目該当なし

橋本 孝之（北海道大学・放射線医学）
全項目該当なし

松原 礼明（東京女子医科大学・放射線腫瘍学）
6；科学研究費補助金（若手研究）

余田 益作（川崎医科大学・放射線腫瘍学）
全項目該当なし
若月 優（自治医科大学・放射線医学）
全項目該当なし
V. 付表

1. 本ガイドラインの要約

<table>
<thead>
<tr>
<th>FFF ビームを使用する場合</th>
<th>中リスク</th>
<th>高リスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>以下全てを満たす</td>
<td></td>
<td></td>
</tr>
<tr>
<td>・「10MV 未満の光子線」または「20MeV 未満の電子線」</td>
<td></td>
<td></td>
</tr>
<tr>
<td>・PMが留置されているが、レートが依存していない</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNCTは中性子を使用しているため、CIEDs装着患者には禁忌とされている。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

以下の全てを満たす

・「10MV未満の光子線」または「20MeV未満の電子線」
・PMが留置されているが、レートが依存していない
・胸部に照射されない
・本体線量2Gy未満
・心室細動の既往なし

リスク分類毎の放射線治療の準備時の対応の比較表

<table>
<thead>
<tr>
<th>低リスク</th>
<th>中リスク</th>
<th>高リスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>左に加え、</td>
<td>左に加え、</td>
<td>左に加え、</td>
</tr>
</tbody>
</table>
| ・インフォームド・コンセントを取得する。
・循環器科と密な連携を取る。
・ペースメーカ手帳を確認する。
・リスクを分類する。
・循環器科医と、照射中に動作異常が生じた場合の対応について検討する。
・放射線治療スタッフは動作異常が発生した場合の対応を十分理解しておく。
・計画CTは診断用CTと同様に対応する。
・本体に直接線を照射しない。
・可能な限り、光子線においては10MV未満を、電子線においては20MeV未満を使用する。
・本体の線量を評価する。
・照射中にペーシングの抑制が起きた場合に、以降の照射で同期ペーシングにするかどうかについて、循環器科医と検討する。 |
| 左に加え、| 左に加え、| 左に加え、|
| ・照射中にICD機能を停止させるかどうかについて、循環器科医と検討する。
・機能チェックを毎週行うかどうかについて、循環器科医と検討する。 |
| 左に加え、| 左に加え、| 左に加え、|
| ・適切ながん治療の妨げになる場合、本体の留置部位の変更を含めた対応を検討する(リスクとベネフィットを踏まえ、本体線量5Gy未満の場合は留置部位の変更は推奨しないという指針があることを認識しておく)。 |
リスク分類毎の放射線治療の照射直前、照射中、照射直後の対応の比較表

<table>
<thead>
<tr>
<th></th>
<th>低リスク</th>
<th>中リスク</th>
<th>高リスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>本体の設定変更を行う可能性があるため、速やかに設定変更を行える体制を取っておく。</td>
<td>・初回治療後 •全ての放射線治療が終了した後 •1〜6ヶ月後にもチェックを行うかどうかについて、循環器科医と検討する</td>
<td>・初回治療後 •予定のおおよそ半分の放射線治療が終了した後 •毎週チェックを行うかどうかについて、循環器科医と検討する •全ての放射線治療が終了した後 •1〜6ヶ月後にもチェックを行うかどうかについて、循環器科医と検討する</td>
<td>・初回治療後 •毎週・毎回チェックを行わなくどうかについて、循環器科医と検討する •全ての放射線治療が終了した後 •1〜6ヶ月後にもチェックを行うかどうかについて、循環器科医と検討する</td>
</tr>
<tr>
<td>MV X線照射、照準写真においても照射野内に本体が入らないように注意する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV X線CBCTは照射範囲に本体が入る場合は原則行わない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kV X線による照合、照準写真、CBCTは診断と同様に対応する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>照射中にペーシングの制御が起きた場合、以降の照射におけるペーシングの設定を変更した場合は、照射直後に必要な設定に戻す。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

リスク分類毎の機能チェックのタイミングの比較表

<table>
<thead>
<tr>
<th></th>
<th>低リスク</th>
<th>中リスク</th>
<th>高リスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>2回目以降の照射における心電図もしくはパルスオキシメータによって脈拍に異常がないか監視する（必要に応じて2回目以降の照射における脈拍の監視を継続する）。</td>
<td>・初回治療後 •全ての放射線治療が終了した後 •1〜6ヶ月後にもチェックを行うかどうかについて、循環器科医と検討する</td>
<td>・初回治療後 •予定のおおよそ半分の放射線治療が終了した後 •毎週チェックを行うかどうかについて、循環器科医と検討する •全ての放射線治療が終了した後 •1〜6ヶ月後にもチェックを行うかどうかについて、循環器科医と検討する</td>
<td>・初回治療後 •毎週・毎回チェックを行わなくどうかについて、循環器科医と検討する •全ての放射線治療が終了した後 •1〜6ヶ月後にもチェックを行うかどうかについて、循環器科医と検討する</td>
</tr>
<tr>
<td>初回治療後</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>予定のおおよそ半分の放射線治療が終了した後</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>毎週チェックを行うかどうかについて、循環器科医と検討する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>全ての放射線治療が終了した後</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1〜6ヶ月後にもチェックを行うかどうかについて、循環器科医と検討する。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

植込み型心臓モニタ：前述の行うべき事項において、植込み型心臓モニタであっても行うべき事項を循環器科医と検討し、対応された。その際，メーカーの最新の情報も確認された。

リードレスペースメーカ：PMと同様に対応された。その際，メーカーの最新の情報も確認された。
<table>
<thead>
<tr>
<th></th>
<th>低リスク</th>
<th>中リスク</th>
<th>高リスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIAC/AIRO/AIFM3</td>
<td>以下の全てを満たす。</td>
<td>低・高リスク以外</td>
<td>1〜3のいずれかに該当する。</td>
</tr>
<tr>
<td>低リスク以外 1〜3のいずれかに該当する。</td>
<td>以下の全てを満たす。</td>
<td>低・高リスク以外</td>
<td>1〜2のいずれかに該当する。</td>
</tr>
<tr>
<td>Salerno, et al.7</td>
<td>以下の全てを満たす。</td>
<td>低・高リスク以外</td>
<td>本体線量 10Gy を超える</td>
</tr>
<tr>
<td>DEGRO/DGK4</td>
<td>以下の全てを満たす。</td>
<td>低・高リスク以外</td>
<td>本体線量 10Gy を超える</td>
</tr>
<tr>
<td>Netherlands2</td>
<td>以下の全てを満たす。</td>
<td>低・高リスク以外</td>
<td>本体線量 10Gy を超える</td>
</tr>
</tbody>
</table>

【リスク分類によらない指針】

HIAS8

<table>
<thead>
<tr>
<th></th>
<th>低リスク</th>
<th>高リスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>以下の全てを満たす。</td>
<td>以下に示す。</td>
<td>以下のいずれかに該当する。</td>
</tr>
<tr>
<td>"10MV未満の光子線"または"電子線"</td>
<td>以下の全てを満たす。</td>
<td>以下のいずれかに該当する。</td>
</tr>
<tr>
<td>PM 依存なし</td>
<td>以下の全てを満たす。</td>
<td>以下のいずれかに該当する。</td>
</tr>
<tr>
<td>心室細動の既往なし</td>
<td>以下の全てを満たす。</td>
<td>以下のいずれかに該当する。</td>
</tr>
</tbody>
</table>

BNCT は中性子を使用しているため、CIEDs 装着患者には禁忌とされている。

HRS8

| 動作・動作異常の主な原因は二次中性子を発生する放射線（"10MVを超える光子線"または"電子線"）である。 |
| 10MV の光子線は議論の余地がある。18MV と比べて 10MV の光子線による二次中性子の発生は少ないが、動作異常に関連する量である。 |
| 20MeV 以上の電子線も 10MV の光子線と同じ、二次中性子を発生する。 |
| 陽子線は光子線よりも多くの二次中性子を発生し、臨床で使用されるエネルギーにおいて二次中性子を発生する放射線といえる。 |
リスク分類毎の放射線治療の準備時の対応の比較表

<table>
<thead>
<tr>
<th></th>
<th>低リスク</th>
<th>中リスク</th>
<th>高リスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIAC/AIRO/AIFM³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>循環器科で評価を行う。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射線治療のモダリティ、エネルギー、治療部位、CIEDsの種類、患者の状態に従ってリスクを分類する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>インフォームド・コンセントを取得する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体への累積線量を見積もる。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体の実際の線量を評価する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salerno, et al.⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIEDsの情報を確認する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM依存性を確認する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体への線量を見積もる。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>右に加え。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>「放射線治療の実施を再考する」または「本体の位置変更を行う」</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEGRO/DGK⁴</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>過去のCIEDs不良の既往が疑われた場合、すぐに循環器科医に連絡する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>循環器科にコンサルトする。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>インフォームド・コンセントを取得する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光子線を使用する場合、6MV（もしくは10MV）までのエネルギーを使用する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体の累積線量を記録する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体に直接線を照射しない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>直接線が本体に照射される場合、循環器科医と本体の位置変更を検討する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リスクを分類する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>救急プロトコールを確立する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射線科と循環器科で協働する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>右に加え。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>「本体の位置変更を行う」または「本体線量を減らすように治療計画を変更する」</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>「本体線量の低減が不可能な場合は放射線治療の実施を再考する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands⁵</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>循環器科にコンサルトする。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>インフォームド・コンセントを取得する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM依存性を確認する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ヶ月より前に機能チェックを受けていた場合、再度機能チェックを行う。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10MV以下の光子線を使用する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体の線量を見積もる。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体の線量を最小にする。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>右に加え。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>「放射線治療の実施を再考する」または「本体の位置変更を行う」</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>低リスク</td>
<td>中リスク</td>
<td>高リスク</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>本ガイドライン</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・インフォームド・コンセン</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>トを取得する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・循環器科と密な連携を取</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・リスクを分類する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・循環器科医との対応について検討する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・放射線治療スタッフと同様に動作異常が生じた場合の対応について十分理解しておく。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・計画 CT は診断用 CT と同様に対応する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・体に直接線を照射しない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・可能な限り、光子線においては 10MV 未満を、電子線においては 20MeV 未満を使用する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・本体の線量を評価する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・照射中にペーシングの抑制が生じた場合に、以降の照射で非同期ペーシングにすることについて、循環器科医と検討す</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【リスク分類によらない指針】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRS®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・ICD 機能の有無、PM 依存性、CIEDs の設定を確認する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・二次中性子を発生しない放射線での治療が望ましい。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>・適切な治療の妨げになる場合、本体の位置変更が推奨される（ただし、本体線量 5Gy 未満の場合、位置変更は推奨されない）。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【リスク分類によらない指針】

HRS®
- ICD 機能の有無、PM 依存性、CIEDs の設定を確認する。
- 二次中性子を発生しない放射線での治療が望ましい。
- 適切な治療の妨げになる場合、本体の位置変更が推奨される（ただし、本体線量 5Gy 未満の場合、位置変更は推奨されない）。
リスク分類毎の放射線治療の照射直前、照射中、照射直後の対応の比較表

<table>
<thead>
<tr>
<th></th>
<th>低リスク</th>
<th>中リスク</th>
<th>高リスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIAC/AIRO/AIFM³</td>
<td>・患者観察カメラで患者の状況を十分観察する。</td>
<td>左に加え。</td>
<td>左と同様。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・「心電図」または「SpO2」モニタリングを行う。</td>
<td></td>
</tr>
<tr>
<td>Salerno, et al.⁷</td>
<td>・患者観察カメラで患者の状況を十分観察する。</td>
<td>左に加え。</td>
<td>左に加え。</td>
</tr>
<tr>
<td></td>
<td>・ICDの場合、「頻脈治療機能の一時停止」または「マグネット使用」を行う。</td>
<td>・照射中に救急カートを準備しておく。</td>
<td>・毎回心電図モニタリングを行う。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・体外ペーシングの可能性に備える。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>循環器専門の訓練されたスタッフが10分以内に駆け付けられる。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>左に加え。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>毎回心電図モニタリングを行う。</td>
<td></td>
</tr>
<tr>
<td>DEGRO/DGK⁴</td>
<td>・患者毎に最適に対応する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>左に加え。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMを非同期モードにする。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>「心電図」および「SpO2」モニタリングを行う。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>体外除細動と体外ペーシングが実施可能である。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>血圧測定と本体の設定変更を行えるようにしておく。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>循環器科医または「麻酔科医」が立ち合う。</td>
<td></td>
</tr>
<tr>
<td>Netherlands²</td>
<td>・患者観察カメラで患者の状況を十分観察する。</td>
<td>左に加え。</td>
<td>左に加え。</td>
</tr>
<tr>
<td></td>
<td>・ICDの場合、「頻脈治療機能の一時停止」または「マグネット使用」を行う。</td>
<td>・照射中に救急カートを準備しておく。</td>
<td>・毎回心電図モニタリングを行う。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・体外ペーシングの可能性に備える。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>循環器専門の訓練されたスタッフが10分以内に駆け付けられる。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>左に加え。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>毎回心電図モニタリングを行う。</td>
<td></td>
</tr>
<tr>
<td>低リスク</td>
<td>中リスク</td>
<td>高リスク</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>本ガイドライン</td>
<td>本ガイドライン</td>
<td>本ガイドライン</td>
<td></td>
</tr>
<tr>
<td>・より高いリスクに準じて対応することを妨げない。</td>
<td>・より高いリスクに準じて対応することを妨げない。</td>
<td>・より高いリスクに準じて対応することを妨げない。</td>
<td></td>
</tr>
<tr>
<td>・本体の設定変更を行う可能性があるため、速やかに設定変更を行える体制を取っておく。</td>
<td>・初回治療中には心電図もしくはパルスオキシメータによって脈拍に異常がないか監視する（必要な場合には2回目以降も照射中の脈拍の監視を継続する）。</td>
<td>・初回治療中には心電図もしくはパルスオキシメータによって脈拍に異常がないか監視する。</td>
<td></td>
</tr>
<tr>
<td>・MV X線照合、照準写真においても照射野内に本体が入らないように注意する。</td>
<td>・MV X線CBCTは照射範囲に本体が入る場合は原則行わない。</td>
<td>・循環器科医との検討結果に基づいてICD機能を停止する（この場合、一時的体外除細動器[AEDを含む]を準備する）。</td>
<td></td>
</tr>
<tr>
<td>・kV X線による照合、照準写真、CBCTは診断と同様に対応する。</td>
<td>・kV X線による照合、照準写真、CBCTは診断と同様に対応する。</td>
<td>・循環器科医との検討結果に基づいてICD機能を停止する（この場合、一時的体外除細動器[AEDを含む]を準備する）。</td>
<td></td>
</tr>
<tr>
<td>・照射中にペーシングの抑制が起きた場合に、以降の照射で非同期ペーシングにするかどうかについては、循環器科医と準備時に検討した通りに実施する。</td>
<td>・照射中に動作異常が生じた場合、循環器科医との検討結果に基づいて対応する。</td>
<td>・循環器科医との検討結果に基づいてICD機能を停止する（この場合、一時的体外除細動器[AEDを含む]を準備する）。</td>
<td></td>
</tr>
<tr>
<td>・照射中は患者観察カメラで患者の状況を十分に観察する。</td>
<td>・照射中は患者観察カメラで患者の状況を十分に観察する。</td>
<td>・循環器科医との検討結果に基づいてICD機能を停止する（この場合、一時的体外除細動器[AEDを含む]を準備する）。</td>
<td></td>
</tr>
<tr>
<td>・毎回照射後に自覚的異常の有無、脈拍を確認する。</td>
<td>・毎回照射後に自覚的異常の有無、脈拍を確認する。</td>
<td>・循環器科医との検討結果に基づいてICD機能を停止する（この場合、一時的体外除細動器[AEDを含む]を準備する）。</td>
<td></td>
</tr>
<tr>
<td>・照射直前にCIEDsの設定を変更した場合は、照射直後に必要な設定に戻す。</td>
<td>・照射直前にCIEDsの設定を変更した場合は、照射直後に必要な設定に戻す。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【リスク分類によらない指針】

HRS®

・毎回の照射時に、持続的に患者観察カメラやマイクによる患者の状況確認が推奨される。
4. リスク分類毎の機能チェックのタイミングの比較表

<table>
<thead>
<tr>
<th>低リスク</th>
<th>中リスク</th>
<th>高リスク</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIAC/AIRO/AIFM<sup>3</sup></td>
<td>- 初回照射後
- 半分終了時点
- 照射最終日
- 1ヶ月後
- 6ヶ月後</td>
<td>- 初回照射後
- 半分終了時点
- 照射最終日
- 1ヶ月後
- 6ヶ月後</td>
</tr>
<tr>
<td>Salerno, et al.<sup>7</sup></td>
<td>- 毎週（ICD のみ）
- 1ヶ月後
- 3ヶ月後
- 6ヶ月後</td>
<td>- 毎週
- 1ヶ月後
- 3ヶ月後
- 6ヶ月後</td>
</tr>
<tr>
<td>DEGRO/DGK<sup>4</sup></td>
<td>- 1ヶ月後
- 3ヶ月後
- 6ヶ月後</td>
<td>- 毎回照射前後
- 1ヶ月後
- 3ヶ月後
- 6ヶ月後</td>
</tr>
<tr>
<td>Netherlands<sup>2</sup></td>
<td>- 毎週（ICD のみ）
- 1ヶ月後
- 3ヶ月後
- 6ヶ月後</td>
<td>- 毎週
- 1ヶ月後
- 3ヶ月後
- 6ヶ月後</td>
</tr>
</tbody>
</table>

【リスク分類によらない指針】

HRS⁸ - 二次中性子を発生する放射線（「10MV を超える光子線」または「陽子線」）の場合は、毎週のチェックが推奨される。
- PM 依存ありの場合、毎週のチェックが妥当である。
- 照射最終日にチェックすべきである。

Zaremba, et al.¹⁸ - 電子線の場合、追加のチェックは不要である。
- 「PM（CRT-P を含む）」かつ「10MV を超える光子線」の場合、放射線治療開始前に、放射線治療開始後にチェックする。
- 「PM（CRT-P を含む）」かつ「10MV を超える光子線」の場合、放射線治療開始前に、放射線治療開始後にチェックする。
- 「ICD（CRT-D を含む）」かつ「10MV を超える光子線」の場合、放射線治療開始前に、放射線治療開始後にチェックする。
5. 主なCIEDsメーカーの推奨の比較表

以下の比較表は、2018年8月時点における各メーカーの推奨の要点をまとめたものである。治療にあたっては各メーカーの最新の情報を確認された。

<table>
<thead>
<tr>
<th></th>
<th>Boston Scientific 社</th>
<th>St. Jude Medical 社</th>
<th>Medtronic 社</th>
<th>Biotronik 社</th>
<th>Japan Lifeline 社</th>
</tr>
</thead>
<tbody>
<tr>
<td>照射前</td>
<td>協力体制</td>
<td>・放射線治療医は循環器科医に相談し、患者毎に個別に治療計画を作成する。</td>
<td>・放射線科と循環器科で協力体制を整える。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>放射線治療計画</td>
<td>・本体への推奨最大累積線量は2Gyが示されている。</td>
<td>・10MV以下を使用する。</td>
<td>・PMが直接被曝しないようにする。</td>
<td>・PMの累積線量が5Gyを超えてはいけない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・本体の近傍で放射線を使用しないことを推奨する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・本体を避けるビームを使用する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・本体の累積線量限度はPMで5Gy、ICDで1～5Gyであるが、機種による。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・本体に直接照射されないようにする。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・本体の累積線量が2Gyを超えないように配慮する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・PMが直接被曝しないようにする。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・PMの累積線量が5Gyを超えてはいけない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・照射部位が植込み部位に近い場合は移動を推奨する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本体の位置変更</td>
<td></td>
<td>・直接照射される場合は、本体の移動等を検討する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・植込み部位や近傍で放射線治療を実施する場合、本体の移動が必要になる場合がある。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・照射部位が植込み部位に近い場合は移動を推奨する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>照射直前</td>
<td></td>
<td>・ICDやCRT-Dの場合、頻脈治療を停止し、ペーシングの抑制がみられる場合は一時的に非同期ペーシングにする。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・PMやCRT-Pの場合、非同期ペーシングにする。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・ICDでは頻拍性不整脈の検出や治療機能の作動を停止する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・モードを適切に切り替える。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・ICDでは心室頻拍および心室細動の検出機能を一時的に停止する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・デバイスのデータを確認し、保管する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>・ICDやCRT-DはICD治療機能を停止する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>照射中</td>
<td>モニタリング</td>
<td>最適なモニタリングレベルを決定する必要がある。循環器科医は患者毎に個別の推奨事項を定めて安全性を高める必要がある（例：照射毎の持続的な心臓モニタ）。</td>
<td>初回の照射中に心電図をモニタリングし、電磁干渉の有無を確認し、以降の治療中に心電図のモニタリングが必要かどうかを決定する。デバイスの累積線量のモニタや記録を推奨する。</td>
<td>パルスオキシメータや心電図等を使用し、心拍を連続的に監視する。体外式除細動器を準備する。デバイスのプログラムに精通したスタッフとプログラマを配置する。</td>
<td>心電図でモニタリングする。一時的体外ペーシングを準備する。</td>
</tr>
<tr>
<td>照射直後</td>
<td>プログラミングを変更した場合は、必要な設定に戻す。機能評価を推奨するが、評価の範囲、タイミング、頻度は担当の循環器科医が判断する。</td>
<td>照射中にデバイスに関連した症状が見られた場合、デバイスのデータを確認し、評価する。PM依存度の高い患者では、治療期間中1〜2回または治療毎にデバイスの評価を行う。</td>
<td>デバイスの機能をチェックする。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>照射後</td>
<td>機能不良が発生していても、これまで未使用だった機能を照射完遂から数ヶ月後にはじめて使用するまで発見されない場合もあるため、機能を慎重に監視する。</td>
<td>詳細なデバイス検査を考慮した場合がある。ICD患者には誘発試験の実施も考慮すべきである。</td>
<td>機能不全等が遅れて出現する場合もあため、照射完遂後翌日以降にデバイスチェックを再度行うか、ホームモニタリングで経過観察を実施する。</td>
<td>機能不良が発生した場合、ICD患者には誘発試験の実施も考慮すべきである。</td>
<td></td>
</tr>
</tbody>
</table>
6. 本ガイドラインの新旧比較表

<table>
<thead>
<tr>
<th>旧</th>
<th>⇒</th>
<th>新</th>
</tr>
</thead>
<tbody>
<tr>
<td>用語</td>
<td>PM／ICD</td>
<td>CIEDs</td>
</tr>
<tr>
<td>リスク分類</td>
<td>一</td>
<td>III.2参照</td>
</tr>
<tr>
<td>準備時</td>
<td>・循環器の病態およびPM／ICDの依存度を把握する</td>
<td>・循環器の病態（心室細動の既往を含む）およびCIEDsの依存度（ICD介入の既往を含む）を把握する。</td>
</tr>
<tr>
<td></td>
<td>・ペースメーカー手帳などを確認し、コピーを診療録に保存しておく。</td>
<td>・ペースメーカー手帳でメーカー連絡先、機種、型式、設定などを確認し、コピーを診療録に保存しておく。</td>
</tr>
<tr>
<td></td>
<td>・放射線治療スタッフ（放射線腫瘍医・診療放射線技師・医学物理士・看護師など）にPM／ICD装着患者であることを十分認識させる。PM／ICDへの依存度や設定・動作異常時の対応について、スタッフが十分理解しておくことが必要である。</td>
<td>・放射線治療スタッフ（放射線治療医、診療放射線技師、医学物理士、看護師など）は患者のCIEDsへの依存度や設定、動作異常や急変時の対応について十分理解しておく。</td>
</tr>
<tr>
<td></td>
<td>・緊急を要する場合の循環器科の支援体制を整えしておく。</td>
<td>・急変時の支援体制を整えておく。</td>
</tr>
<tr>
<td></td>
<td>・それが不可能な場合にはPM／ICDの入れ替えによる留置部位の変更を含めた対応を検討する。</td>
<td>・高リスク患者において適切ながん治療の妨げになる場合、CIEDs本体の留置部位の変更を含めた対応を検討する。ただし、留置部位の変更に伴って処置を要する合併症が4〜15%に発生するとしており、リスクとベネフィットを踏まえ、本体線量5Gy未満の場合は留置部位の変更は推奨しないという指針があることを認識しておく。</td>
</tr>
<tr>
<td></td>
<td>・ICD装着患者の放射線治療においては中性子線の混入の影響によって動作異常が起こる可能性を考え、10MV未満のエネルギーの使用を推奨する報告もある。</td>
<td>・可能な限り、光子線においては10MV未満を、電子線においては20MeV未満を使用する。</td>
</tr>
<tr>
<td></td>
<td>・この総線量はできるだけ少なくなるように配慮し、可能であればPMは2Gy以下、ICDは1Gy以下にする。</td>
<td>・この総線量はできるだけ少なくなるように配慮する。</td>
</tr>
<tr>
<td>旧</td>
<td>⇒</td>
<td>新</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 一 | | ・リセットなどの動作異常発生時のバックアップ設定値について、メーカーなどから情報を収集するよう努める（照射中の脈拍監視時に、バックアップ設定値への脈拍の変化に気付くことができれば、動作異常発生の早期発見に繋がると考えられるため）。
| | | ・循環器科医と、照射中に動作異常が生じた場合の対応について、検討しておく。
| | | ・照射中にペーシングの抑制が起きた場合に、対応について、検討しておく。
| | | ・PM 依存ありの患者においては、照射中に一時的体外ペーシングを準備するかどうかについて、循環器科医と検討する。
| | | ・ICD 機能がある場合、照射中に ICD 機能を停止させるかどうかについて、循環器科医と検討する。
| | | ・中リスク患者においては、機能チェックを毎週行うかどうかについて、循環器科医と検討する。
| | | ・高リスク患者においては、機能チェックを毎回行うかどうかについて、循環器科医と検討する。
| | | ・中リスク患者においては、機能チェックを毎週行うかどうかについて、循環器科医と検討する。
| | | ・高リスク患者においては、機能チェックを毎回行うかどうかについて、循環器科医と検討する。
| | | ・初回治療時には治療後に PM／ICD の機能チェックを行い、診療録に記録を残す。ただし、機能チェックのできない施設においては、省略可能であるかどうか循環器科医の判断を仰ぐこと。
| | | ・全てのリスクにおいて、初回治療後に CIEDs の機能チェックを行い、診療録に記載する。
| | | ・照射中に ICD の機能を停止させるかどうかは、各施設で循環器科医と検討する。停止させる場合には一時的体外除細動器や一時的体外ペーシングの準備を行うこと。ただし、本ガイドライン策定時には放射線治療による除細動機能の異常発動の報告は確認されていない。
| | | ・ICD 機能がある場合、照射中に ICD 機能を停止させるかどうかについては、循環器科医と準備時に検討した通りに実施する。停止させる場合には一時的体外除細動器（AED を含む）の準備を行うこと。
| | | ・高リスク患者においては、心電図モニターもしくはパルソキシメータによって脈拍に異常がないか確認し、必要な場合には 2 回目以降も照射中の脈拍の監視を継続する。
| | | ・中リスク患者においては、初回治療中には心電図もしくはパルソキシメータによって脈拍に異常がないか監視し、必要な場合には 2 回目以降も照射中の脈拍の監視を継続する。
| | | ・高リスク患者においては、毎回の照射中に心電図もしくはパルソキシメータによって脈拍に異常がないか監視する。
<table>
<thead>
<tr>
<th>旧</th>
<th>⇒</th>
<th>新</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>・全てのリスクにおいてCIEDsの設定変更を行う可能性があるため、速やかに設定変更を行う体制を取っておく。</td>
<td>・全てのリスクにおいてCIEDsの設定変更を行う可能性があるため、速やかに設定変更を行う体制を取っておく。</td>
</tr>
<tr>
<td></td>
<td>・照射中にペーシングの抑制が起きた場合に、以降の照射で非同期ペーシングにするかどうかについては、循環器科医と準備時に検討した通りに実施する。</td>
<td>・照射中にペーシングの抑制が起きた場合に、以降の照射で非同期ペーシングにするかどうかについては、循環器科医と準備時に検討した通りに実施する。</td>
</tr>
<tr>
<td></td>
<td>・PM依存ありの患者において、照射中に一時的体内ペーシングを準備するかどうかについては、循環器科医と準備時に検討した通りに実施する。</td>
<td>・照射中に一時的体内ペーシングを準備するかどうかについては、循環器科医と準備時に検討した通りに実施する。</td>
</tr>
<tr>
<td>終了後</td>
<td>・中リスク患者においては、予定のおおよそ半分の放射線治療が終了した後に機能チェックを行なう。毎週チェックするかどうかについては、循環器科医と準備時に検討した通りに実施する。</td>
<td>・全てのリスクにおいて、全ての放射線治療が終了した後に循環器科を受診し、CIEDsの機能検査を行い、診療録に記録を残す。</td>
</tr>
<tr>
<td></td>
<td>・高リスク患者においては、毎週機能チェックを行う。毎回チェックするかどうかについては、循環器科医と準備時に検討した通りに実施する。</td>
<td>・全てのリスクにおいて、全ての放射線治療が終了した後に循環器科を受診し、CIEDsの機能検査を行い、診療録に記録を残す。</td>
</tr>
<tr>
<td>植込み型心臓モニタ・リードレスペースメーカ</td>
<td></td>
<td>・植込み型心臓モニタ：前述の行うべき事項において、植込み型心臓モニタであっても行うべき事項を循環器科医と検討し、対応されたい。その際、メーカーの最新の情報も確認されたい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・リードレスペースメーカ：PMと同様に対応されたい。その際、メーカーの最新の情報も確認されたい。</td>
</tr>
</tbody>
</table>
VI. 参考文献
1. 我が国における非薬物治療の現状. 不整脈の非薬物治療ガイドライン（2011年改訂版）. 日本循環器学会編.
17. 植込み型心臓電気デバイス（CIED）不整脈非薬物治療ガイドライン（2018年改訂版）日本循環器学会/日本不整脈心電学会編.
植込み型心臓電気デバイス装着患者に対する
放射線治療ガイドライン

日本放射線腫瘍学会・日本循環器学会 編
2019年10月